API 请求并行处理器
使用 OpenAI API 快速处理大量文本需要一些小心。
如果您逐一提交一百万个 API 请求,它们将需要数天时间才能完成。
如果您并行涌入一百万个 API 请求,它们将超出速率限制并因错误而失败。
为了最大化吞吐量,需要限制并行请求以保持在速率限制之下。
此脚本将对 OpenAI API 的请求并行化,同时进行节流以保持在速率限制之下。
特征:
- 从文件中流式传输请求,以避免为巨大的作业耗尽内存
- 同时发出请求,以最大化吞吐量
- 限制请求和令牌使用,以保持在速率限制之下
- 最多重试失败请求 {max_attempts} 次,以避免丢失数据
- 记录错误,诊断请求问题
调用脚本的示例命令:
""" API REQUEST PARALLEL PROCESSOR Using the OpenAI API to process lots of text quickly takes some care. If you trickle in a million API requests one by one, they'll take days to complete. If you flood a million API requests in parallel, they'll exceed the rate limits and fail with errors. To maximize throughput, parallel requests need to be throttled to stay under rate limits. This script parallelizes requests to the OpenAI API while throttling to stay under rate limits. Features: - Streams requests from file, to avoid running out of memory for giant jobs - Makes requests concurrently, to maximize throughput - Throttles request and token usage, to stay under rate limits - Retries failed requests up to {max_attempts} times, to avoid missing data - Logs errors, to diagnose problems with requests Example command to call script: ``` python examples/api_request_parallel_processor.py \ --requests_filepath examples/data/example_requests_to_parallel_process.jsonl \ --save_filepath examples/data/example_requests_to_parallel_process_results.jsonl \ --request_url https://api.openai.com/v1/embeddings \ --max_requests_per_minute 1500 \ --max_tokens_per_minute 6250000 \ --token_encoding_name cl100k_base \ --max_attempts 5 \ --logging_level 20 ``` Inputs: - requests_filepath : str - path to the file containing the requests to be processed - file should be a jsonl file, where each line is a json object with API parameters - e.g., {"model": "text-embedding-ada-002", "input": "embed me"} - as with all jsonl files, take care that newlines in the content are properly escaped (json.dumps does this automatically) - an example file is provided at examples/data/example_requests_to_parallel_process.jsonl - the code to generate the example file is appended to the bottom of this script - save_filepath : str, optional - path to the file where the results will be saved - file will be a jsonl file, where each line is an array with the original request plus the API response - e.g., [{"model": "text-embedding-ada-002", "input": "embed me"}, {...}] - if omitted, results will be saved to {requests_filename}_results.jsonl - request_url : str, optional - URL of the API endpoint to call - if omitted, will default to "https://api.openai.com/v1/embeddings" - api_key : str, optional - API key to use - if omitted, the script will attempt to read it from an environment variable {os.getenv("OPENAI_API_KEY")} - max_requests_per_minute : float, optional - target number of requests to make per minute (will make less if limited by tokens) - leave headroom by setting this to 50% or 75% of your limit - if requests are limiting you, try batching multiple embeddings or completions into one request - if omitted, will default to 1,500 - max_tokens_per_minute : float, optional - target number of tokens to use per minute (will use less if limited by requests) - leave headroom by setting this to 50% or 75% of your limit - if omitted, will default to 125,000 - token_encoding_name : str, optional - name of the token encoding used, as defined in the `tiktoken` package - if omitted, will default to "cl100k_base" (used by `text-embedding-ada-002`) - max_attempts : int, optional - number of times to retry a failed request before giving up - if omitted, will default to 5 - logging_level : int, optional - level of logging to use; higher numbers will log fewer messages - 40 = ERROR; will log only when requests fail after all retries - 30 = WARNING; will log when requests his rate limits or other errors - 20 = INFO; will log when requests start and the status at finish - 10 = DEBUG; will log various things as the loop runs to see when they occur - if omitted, will default to 20 (INFO). The script is structured as follows: - Imports - Define main() - Initialize things - In main loop: - Get next request if one is not already waiting for capacity - Update available token & request capacity - If enough capacity available, call API - The loop pauses if a rate limit error is hit - The loop breaks when no tasks remain - Define dataclasses - StatusTracker (stores script metadata counters; only one instance is created) - APIRequest (stores API inputs, outputs, metadata; one method to call API) - Define functions - api_endpoint_from_url (extracts API endpoint from request URL) - append_to_jsonl (writes to results file) - num_tokens_consumed_from_request (bigger function to infer token usage from request) - task_id_generator_function (yields 1, 2, 3, ...) - Run main() """ # imports import aiohttp # for making API calls concurrently import argparse # for running script from command line import asyncio # for running API calls concurrently import json # for saving results to a jsonl file import logging # for logging rate limit warnings and other messages import os # for reading API key import tiktoken # for counting tokens import time # for sleeping after rate limit is hit from dataclasses import dataclass # for storing API inputs, outputs, and metadata async def process_api_requests_from_file( requests_filepath: str, save_filepath: str, request_url: str, api_key: str, max_requests_per_minute: float, max_tokens_per_minute: float, token_encoding_name: str, max_attempts: int, logging_level: int, ): """Processes API requests in parallel, throttling to stay under rate limits.""" # constants seconds_to_pause_after_rate_limit_error = 15 seconds_to_sleep_each_loop = 0.001 # 1 ms limits max throughput to 1,000 requests per second # initialize logging logging.basicConfig(level=logging_level) logging.debug(f"Logging initialized at level {logging_level}") # infer API endpoint and construct request header api_endpoint = api_endpoint_from_url(request_url) request_header = {"Authorization": f"Bearer {api_key}"} # initialize trackers queue_of_requests_to_retry = asyncio.Queue() task_id_generator = task_id_generator_function() # generates integer IDs of 1, 2, 3, ... status_tracker = StatusTracker() # single instance to track a collection of variables next_request = None # variable to hold the next request to call # initialize available capacity counts available_request_capacity = max_requests_per_minute available_token_capacity = max_tokens_per_minute last_update_time = time.time() # intialize flags file_not_finished = True # after file is empty, we'll skip reading it logging.debug(f"Initialization complete.") # initialize file reading with open(requests_filepath) as file: # `requests` will provide requests one at a time requests = file.__iter__() logging.debug(f"File opened. Entering main loop") while True: # get next request (if one is not already waiting for capacity) if next_request is None: if queue_of_requests_to_retry.empty() is False: next_request = queue_of_requests_to_retry.get_nowait() logging.debug(f"Retrying request {next_request.task_id}: {next_request}") elif file_not_finished: try: # get new request request_json = eval(next(requests)) next_request = APIRequest( task_id=next(task_id_generator), request_json=request_json, token_consumption=num_tokens_consumed_from_request(request_json, api_endpoint, token_encoding_name), attempts_left=max_attempts, ) status_tracker.num_tasks_started += 1 status_tracker.num_tasks_in_progress += 1 logging.debug(f"Reading request {next_request.task_id}: {next_request}") except StopIteration: # if file runs out, set flag to stop reading it logging.debug("Read file exhausted") file_not_finished = False # update available capacity current_time = time.time() seconds_since_update = current_time - last_update_time available_request_capacity = min( available_request_capacity + max_requests_per_minute * seconds_since_update / 60.0, max_requests_per_minute, ) available_token_capacity = min( available_token_capacity + max_tokens_per_minute * seconds_since_update / 60.0, max_tokens_per_minute, ) last_update_time = current_time # if enough capacity available, call API if next_request: next_request_tokens = next_request.token_consumption if ( available_request_capacity >= 1 and available_token_capacity >= next_request_tokens ): # update counters available_request_capacity -= 1 available_token_capacity -= next_request_tokens next_request.attempts_left -= 1 # call API asyncio.create_task( next_request.call_API( request_url=request_url, request_header=request_header, retry_queue=queue_of_requests_to_retry, save_filepath=save_filepath, status_tracker=status_tracker, ) ) next_request = None # reset next_request to empty # if all tasks are finished, break if status_tracker.num_tasks_in_progress == 0: break # main loop sleeps briefly so concurrent tasks can run await asyncio.sleep(seconds_to_sleep_each_loop) # if a rate limit error was hit recently, pause to cool down seconds_since_rate_limit_error = (time.time() - status_tracker.time_of_last_rate_limit_error) if seconds_since_rate_limit_error < seconds_to_pause_after_rate_limit_error: remaining_seconds_to_pause = (seconds_to_pause_after_rate_limit_error - seconds_since_rate_limit_error) await asyncio.sleep(remaining_seconds_to_pause) # ^e.g., if pause is 15 seconds and final limit was hit 5 seconds ago logging.warn(f"Pausing to cool down until {time.ctime(status_tracker.time_of_last_rate_limit_error + seconds_to_pause_after_rate_limit_error)}") # after finishing, log final status logging.info(f"""Parallel processing complete. Results saved to {save_filepath}""") if status_tracker.num_tasks_failed > 0: logging.warning(f"{status_tracker.num_tasks_failed} / {status_tracker.num_tasks_started} requests failed. Errors logged to {save_filepath}.") if status_tracker.num_rate_limit_errors > 0: logging.warning(f"{status_tracker.num_rate_limit_errors} rate limit errors received. Consider running at a lower rate.") # dataclasses @dataclass class StatusTracker: """Stores metadata about the script's progress. Only one instance is created.""" num_tasks_started: int = 0 num_tasks_in_progress: int = 0 # script ends when this reaches 0 num_tasks_succeeded: int = 0 num_tasks_failed: int = 0 num_rate_limit_errors: int = 0 num_api_errors: int = 0 # excluding rate limit errors, counted above num_other_errors: int = 0 time_of_last_rate_limit_error: int = 0 # used to cool off after hitting rate limits @dataclass class APIRequest: """Stores an API request's inputs, outputs, and other metadata. Contains a method to make an API call.""" task_id: int request_json: dict token_consumption: int attempts_left: int result = [] async def call_API( self, request_url: str, request_header: dict, retry_queue: asyncio.Queue, save_filepath: str, status_tracker: StatusTracker, ): """Calls the OpenAI API and saves results.""" logging.info(f"Starting request #{self.task_id}") error = None try: async with aiohttp.ClientSession() as session: async with session.post( url=request_url, headers=request_header, json=self.request_json ) as response: response = await response.json() if "error" in response: logging.warning( f"Request {self.task_id} failed with error {response['error']}" ) status_tracker.num_api_errors += 1 error = response if "Rate limit" in response["error"].get("message", ""): status_tracker.time_of_last_rate_limit_error = time.time() status_tracker.num_rate_limit_errors += 1 status_tracker.num_api_errors -= 1 # rate limit errors are counted separately except Exception as e: # catching naked exceptions is bad practice, but in this case we'll log & save them logging.warning(f"Request {self.task_id} failed with Exception {e}") status_tracker.num_other_errors += 1 error = e if error: self.result.append(error) if self.attempts_left: retry_queue.put_nowait(self) else: logging.error(f"Request {self.request_json} failed after all attempts. Saving errors: {self.result}") append_to_jsonl([self.request_json, self.result], save_filepath) status_tracker.num_tasks_in_progress -= 1 status_tracker.num_tasks_failed += 1 else: append_to_jsonl([self.request_json, response], save_filepath) status_tracker.num_tasks_in_progress -= 1 status_tracker.num_tasks_succeeded += 1 logging.debug(f"Request {self.task_id} saved to {save_filepath}") # functions def api_endpoint_from_url(request_url): """Extract the API endpoint from the request URL.""" return request_url.split("/")[-1] def append_to_jsonl(data, filename: str) -> None: """Append a json payload to the end of a jsonl file.""" json_string = json.dumps(data) with open(filename, "a") as f: f.write(json_string + "\n") def num_tokens_consumed_from_request( request_json: dict, api_endpoint: str, token_encoding_name: str, ): """Count the number of tokens in the request. Only supports completion and embedding requests.""" encoding = tiktoken.get_encoding(token_encoding_name) # if completions request, tokens = prompt + n * max_tokens if api_endpoint == "completions": prompt = request_json["prompt"] max_tokens = request_json.get("max_tokens", 15) n = request_json.get("n", 1) completion_tokens = n * max_tokens if isinstance(prompt, str): # single prompt prompt_tokens = len(encoding.encode(prompt)) num_tokens = prompt_tokens + completion_tokens return num_tokens elif isinstance(prompt, list): # multiple prompts prompt_tokens = sum([len(encoding.encode(p)) for p in prompt]) num_tokens = prompt_tokens + completion_tokens return num_tokens else: raise TypeError('Expecting either string or list of strings for "prompt" field in completion request') # if embeddings request, tokens = input tokens elif api_endpoint == "embeddings": input = request_json["input"] if isinstance(input, str): # single input num_tokens = len(encoding.encode(input)) return num_tokens elif isinstance(input, list): # multiple inputs num_tokens = sum([len(encoding.encode(i)) for i in input]) return num_tokens else: raise TypeError('Expecting either string or list of strings for "inputs" field in embedding request') # more logic needed to support other API calls (e.g., edits, inserts, DALL-E) else: raise NotImplementedError(f'API endpoint "{api_endpoint}" not implemented in this script') def task_id_generator_function(): """Generate integers 0, 1, 2, and so on.""" task_id = 0 while True: yield task_id task_id += 1 # run script if __name__ == "__main__": # parse command line arguments parser = argparse.ArgumentParser() parser.add_argument("--requests_filepath") parser.add_argument("--save_filepath", default=None) parser.add_argument("--request_url", default="https://api.openai.com/v1/embeddings") parser.add_argument("--api_key", default=os.getenv("OPENAI_API_KEY")) parser.add_argument("--max_requests_per_minute", type=int, default=3_000 * 0.5) parser.add_argument("--max_tokens_per_minute", type=int, default=250_000 * 0.5) parser.add_argument("--token_encoding_name", default="cl100k_base") parser.add_argument("--max_attempts", type=int, default=5) parser.add_argument("--logging_level", default=logging.INFO) args = parser.parse_args() if args.save_filepath is None: args.save_filepath = args.requests_filepath.replace(".jsonl", "_results.jsonl") # run script asyncio.run( process_api_requests_from_file( requests_filepath=args.requests_filepath, save_filepath=args.save_filepath, request_url=args.request_url, api_key=args.api_key, max_requests_per_minute=float(args.max_requests_per_minute), max_tokens_per_minute=float(args.max_tokens_per_minute), token_encoding_name=args.token_encoding_name, max_attempts=int(args.max_attempts), logging_level=int(args.logging_level), ) ) """ APPENDIX The example requests file at openai-cookbook/examples/data/example_requests_to_parallel_process.jsonl contains 10,000 requests to text-embedding-ada-002. It was generated with the following code: ```python import json filename = "data/example_requests_to_parallel_process.jsonl" n_requests = 10_000 jobs = [{"model": "text-embedding-ada-002", "input": str(x) + "\n"} for x in range(n_requests)] with open(filename, "w") as f: for job in jobs: json_string = json.dumps(job) f.write(json_string + "\n") ``` As with all jsonl files, take care that newlines in the content are properly escaped (json.dumps does this automatically). """
评论 (0)