openAI|如何获取嵌入

本文介绍了OpenAI的get_embedding函数,可用于获取输入文本的嵌入向量。通过Python代码示例展示了如何使用该函数,获取指定文本的嵌入向量,进而用于语义搜索、推荐、聚类分析等应用场景。

获取嵌入

函数 get_embedding 将为我们提供输入文本的嵌入。

import openai

embedding = openai.Embedding.create(
    input="Your text goes here", model="text-embedding-ada-002"
)["data"][0]["embedding"]
len(embedding)
1536
import openai
from tenacity import retry, wait_random_exponential, stop_after_attempt


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(text: str, model="text-embedding-ada-002") -> list[float]:
    return openai.Embedding.create(input=[text], model=model)["data"][0]["embedding"]


embedding = get_embedding("Your text goes here", model="text-embedding-ada-002")
print(len(embedding))
1536

此文章由OpenAI开源维基百科原创发布,如若转载请注明出处:https://openai.wiki/get_embeddings.html

(0)
上一篇 2023-02-20 12:12
下一篇 2023-02-20 12:19

相关推荐

  • CPT-3|微调GPT-3以对文本进行分类的最佳做法

    本文介绍了如何使用GPT-3对文本进行分类,包括微调GPT-3模型、训练数据的规模、质量、代表性和指定充分,以及如何设置训练数据的格式和使用分隔符序列,微调模型可以超过文本分类基准上的最新记录。

    2023-02-20
    023.4K
  • GPT-3|代码编写示例

    本文介绍了使用GPT-3编写代码的示例,包括编写SQL查询等。GPT-3能够自动推断变量名称,提高代码编写的效率和准确性。适用于需要大量代码编写的开发场景,让开发者事半功倍。

    ChatGPT 2023-02-20
    001.3K
  • api_request_parallel_processor.py

    API 请求并行处理器使用OpenAI API快速处理大量文本需要小心。如果您逐一提交百万个API请求,它们将需要数天时间才能完成。如果您并行涌入一百万个API请求,它们将超出速率限制并因错误而失败。

    ChatGPT 2023-02-18
    002.9K
  • GPT-3|如何使用大型语言模型

    大型语言模型是一种将文本映射到文本的函数,通过训练学习了语言的概念,实现了自然语言处理。本文介绍了大型语言模型的工作原理,以及如何通过指令提示、完成和演示来控制大型语言模型生成输出。指令提示可以让模型遵循指令,完成可以诱导模型完成你想要的开始,演示可以向模型显示所需的内容。这些控制方法可以用于生产力应用程序、教育应用程序、游戏等数百种软件产品。

    ChatGPT 2023-02-19
    011.4K
  • 免费体验ChatGPT

    免费体验ChatGPT体验计划,因为ChatGPT的种种不可描述原因,openAI的API无法访问,本站无法直接在国内搭建,香港服务器,大家现在可以免费|免翻|免注册体验ChatGPT的魅力啦。

    2023-03-04
    04410.4K

发表回复

登录后才能评论
微信