openAI|如何获取嵌入

本文介绍了OpenAI的get_embedding函数,可用于获取输入文本的嵌入向量。通过Python代码示例展示了如何使用该函数,获取指定文本的嵌入向量,进而用于语义搜索、推荐、聚类分析等应用场景。

获取嵌入

函数 get_embedding 将为我们提供输入文本的嵌入。

import openai

embedding = openai.Embedding.create(
    input="Your text goes here", model="text-embedding-ada-002"
)["data"][0]["embedding"]
len(embedding)
1536
import openai
from tenacity import retry, wait_random_exponential, stop_after_attempt


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(text: str, model="text-embedding-ada-002") -> list[float]:
    return openai.Embedding.create(input=[text], model=model)["data"][0]["embedding"]


embedding = get_embedding("Your text goes here", model="text-embedding-ada-002")
print(len(embedding))
1536

此文章由OpenAI开源维基百科原创发布,如若转载请注明出处:https://openai.wiki/get_embeddings.html

(0)
上一篇 2023-02-20 12:12
下一篇 2023-02-20 12:19

相关推荐

  • openAI|文本比较示例

    OpenAI API 嵌入终结点可用于衡量文本片段之间的相关性或相似性,例如语义搜索、问答、建议和自定义嵌入等操作。余弦相似性分数可以用作排名搜索结果中众多特征中的一个。

    ChatGPT 2023-02-20
    001.6K
  • openAI|嵌入超长文本

    本文介绍了两种处理超过OpenAI嵌入模型最大上下文长度的文本的方法,即简单截断文本和分块处理文本。通过本文,您可以了解到如何避免因超过最大长度而导致的错误,同时又不失去可能相关的文本内容。

    ChatGPT 2023-02-20
    004.2K
  • openAI|获取数据集

    本文将演示如何使用OpenAI API来进行情感分析,通过一个美食评论数据集的案例,让大家了解如何将评论汇总为一个嵌入向量。

    ChatGPT 2023-02-20
    002.5K
  • openAI|使用嵌入的语义文本搜索

    本文介绍如何使用OpenAI的文本嵌入来进行语义文本搜索。通过查询嵌入与文档嵌入进行比较,可以高效的在数据集中搜索相关文本。如何使用余弦相似度计算来搜索文本,并展示了搜索结果。提高搜索效率并降低成本。

    ChatGPT 2023-02-20
    011.9K
  • GPT-3|代码编辑示例

    本文介绍了 OpenAI 的编辑端点如何用于编辑代码,通过 Python 函数的示例展示了如何添加文档字符串、添加测试、转换为其他语言等等操作,让代码更加完善、高效。

    ChatGPT 2023-02-20
    011.5K

发表回复

登录后才能评论
微信