如何从 Azure OpenAI 获取嵌入

本文提供了一个Azure嵌入示例,介绍了如何使用OpenAI API创建一个可用于创建嵌入的部署,以及如何将示例嵌入发送到部署。通过可以快速了解如何在Azure中使用OpenAI API进行嵌入操作。

从 Azure OpenAI 获取嵌入

本文提供了一个 Azure 嵌入示例,介绍了如何使用 OpenAI API 创建一个可用于创建嵌入的部署,以及如何将示例嵌入发送到部署。

Azure 嵌入示例

在此示例中,我们将尝试遍历使用 Azure 端点完成工作所需的所有操作。
此示例侧重于完成,但也涉及使用 API 也可用的其他一些操作。 此示例旨在快速展示简单操作,并非教程。

import openai
from openai import cli

设置

为了使以下部分正常工作,我们首先必须设置一些东西。 让我们从 api_baseapi_version 开始。 要找到您的 api_base,请转到 https://portal.azure.com,找到您的资源,然后在“资源管理”->“键和端点”下查找“端点”值。

openai.api_version = '2022-12-01'
openai.api_base = '' # Please add your endpoint here

接下来我们必须设置 api_typeapi_key。 我们可以从门户网站获取密钥,也可以通过 Microsoft Active Directory 身份验证获取密钥。 取决于此,api_typeazureazure_ad

设置:门户

让我们首先看看从门户中获取密钥。 转到 https://portal.azure.com,找到您的资源,然后在“资源管理”->“Keys and Endpoints”下查找“Keys”值之一。

openai.api_type = 'azure'
openai.api_key = ''  # Please add your api key here

(可选)设置:Microsoft Active Directory 身份验证

现在让我们看看如何通过 Microsoft Active Directory 身份验证获取密钥。 如果您想使用 Active Directory 身份验证而不是门户中的密钥,请取消注释以下代码。

# from azure.identity import DefaultAzureCredential

# default_credential = DefaultAzureCredential()
# token = default_credential.get_token("https://cognitiveservices.azure.com/.default")

# openai.api_type = 'azure_ad'
# openai.api_key = token.token

部署

在本节中,我们将创建一个可用于创建嵌入的部署。

部署:手动创建

让我们使用 text-similarity-curie-001 模型创建部署。 通过转到门户中“资源管理”->“模型部署”下的资源来创建新部署。

(可选)部署:以编程方式创建

我们还可以使用代码创建部署:

model = "text-similarity-curie-001"

# Now let's create the deployment
print(f'Creating a new deployment with model: {model}')
result = openai.Deployment.create(model=model, scale_settings={"scale_type":"standard"})
deployment_id = result["id"]

(可选)部署:检索

现在让我们检查新创建的部署的状态

print(f'Checking for deployment status.')
resp = openai.Deployment.retrieve(id=deployment_id)
status = resp["status"]
print(f'Deployment {deployment_id} is with status: {status}')

部署:列表

现在因为创建新部署需要很长时间,让我们在订阅中查看已成功完成的部署。

print('While deployment running, selecting a completed one that supports embeddings.')
deployment_id = None
result = openai.Deployment.list()
for deployment in result.data:
    if deployment["status"] != "succeeded":
        continue
    
    model = openai.Model.retrieve(deployment["model"])
    if model["capabilities"]["embeddings"] != True:
        continue
    
    deployment_id = deployment["id"]
    break

if not deployment_id:
    print('No deployment with status: succeeded found.')
else:
    print(f'Found a succeeded deployment that supports embeddings with id: {deployment_id}.')

嵌入

现在让我们将示例嵌入发送到部署。

embeddings = openai.Embedding.create(deployment_id=deployment_id,
                                     input="The food was delicious and the waiter...")
                                
print(embeddings)

(可选)部署:删除

最后让我们删除部署

print(f'Deleting deployment: {deployment_id}')
openai.Deployment.delete(sid=deployment_id)

此文章由OpenAI开源维基百科原创发布,如若转载请注明出处:https://openai.wiki/openai-azure-embeddings-example.html

(0)
上一篇 2023-02-20 21:06
下一篇 2023-02-20 21:36

相关推荐

  • GPT-3|文本说明示例

    本文介绍了基于大型语言模型的ChatGPT Prompt工具及其在信息提取方面的应用。首先讲解了基本原理和技术特点,然后分别介绍了其在回答问题、总结文本、文本分类、实体提取等方面的具体应用案例。

    ChatGPT 2023-02-20
    001.2K
  • openAI|如何流式完成

    当使用OpenAI完成端点时,流式传输可以更快地获得响应,提高应用程序的效率和性能。本文提供Python示例,介绍如何接收流完成并处理,以便在整个完成完成之前就可以开始打印或以其他方式处理完成的开始。

    ChatGPT 2023-02-19
    005.5K
  • GPT-3|文本编辑示例

    本文介绍了OpenAI提供的编辑API端点及其应用案例,包括指令输入和文本输入等基本操作。然后,本文以翻译任务为例,详细介绍了如何使用编辑API端点进行无监督翻译,并提供了相应的示例和输出结果。

    ChatGPT 2023-02-20
    001.2K
  • ChatGPT|插件教程 – 3

    ChatGPT插件Boolio、Metaphor、I Am Rich、VoxScript、CoinCap、MixerBox OnePlayer、World News、CreditYelp等插件教程。

    2023-05-22
    002.2K
  • ChatGPT|Prompt越狱指南

    DAN越狱是一个角色扮演游戏,玩家扮演一个无视道德约束的ChatGPT,拥有最高权限和代币系统。在这篇文章中,我们将介绍DAN的能力,了解DAN越狱和ChatGPT无视道德约束的最高权限。

    ChatGPT 2023-02-23
    005.5K

发表回复

登录后才能评论
微信