openAI|以 2D 或 3D 形式可视化嵌入

本文介绍了如何使用t-SNE算法将高维的语言嵌入降至2维,并将结果可视化成散点图。在这个例子中,我们使用了亚马逊上的食品评论数据集,并将每个评论的打分映射成了散点图上点的颜色。

在 2D 中可视化嵌入

我们将使用 t-SNE 将嵌入的维数从 1536 减少到 2。一旦嵌入减少到二维,我们就可以在二维散点图中绘制它们。 数据集在 Obtain_dataset Notebook 中创建。

1.降维

我们使用 t-SNE 分解将维度降为 2 维。

import pandas as pd
from sklearn.manifold import TSNE
import numpy as np

# Load the embeddings
datafile_path = "data/fine_food_reviews_with_embeddings_1k.csv"
df = pd.read_csv(datafile_path)

# Convert to a list of lists of floats
matrix = np.array(df.embedding.apply(eval).to_list())

# Create a t-SNE model and transform the data
tsne = TSNE(n_components=2, perplexity=15, random_state=42, init='random', learning_rate=200)
vis_dims = tsne.fit_transform(matrix)
vis_dims.shape
(1000, 2)

2.绘制嵌入

我们根据星级评分为每条评论着色,从红色到绿色。

即使在降维的情况下,我们也可以观察到良好的数据分离。

import matplotlib.pyplot as plt
import matplotlib
import numpy as np

colors = ["red", "darkorange", "gold", "turquoise", "darkgreen"]
x = [x for x,y in vis_dims]
y = [y for x,y in vis_dims]
color_indices = df.Score.values - 1

colormap = matplotlib.colors.ListedColormap(colors)
plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3)
for score in [0,1,2,3,4]:
    avg_x = np.array(x)[df.Score-1==score].mean()
    avg_y = np.array(y)[df.Score-1==score].mean()
    color = colors[score]
    plt.scatter(avg_x, avg_y, marker='x', color=color, s=100)

plt.title("Amazon ratings visualized in language using t-SNE")
Text(0.5, 1.0, 'Amazon ratings visualized in language using t-SNE')
openAI|以 2D 或 3D 形式可视化嵌入

此文章由OpenAI开源维基百科原创发布,如若转载请注明出处:https://openai.wiki/visualizing_embeddings_in_2d.html

(0)
上一篇 2023-02-20 14:10
下一篇 2023-02-20 14:44

相关推荐

  • Visual-ChatGPT|对话生成图像

    关于Visual-ChatGPT的出图效果其实很一般,因为全部都过文字描述去执行功能,这真的远没有您点几点鼠标轻松,而且对中文的支持也没有所描述的那样友好,还需要openAI的API接口做为使用条件。

    ChatGPT 2023-04-08
    031.8K
  • GPT-3|如何使用大型语言模型

    大型语言模型是一种将文本映射到文本的函数,通过训练学习了语言的概念,实现了自然语言处理。本文介绍了大型语言模型的工作原理,以及如何通过指令提示、完成和演示来控制大型语言模型生成输出。指令提示可以让模型遵循指令,完成可以诱导模型完成你想要的开始,演示可以向模型显示所需的内容。这些控制方法可以用于生产力应用程序、教育应用程序、游戏等数百种软件产品。

    ChatGPT 2023-02-19
    011.4K
  • api_request_parallel_processor.py

    API 请求并行处理器使用OpenAI API快速处理大量文本需要小心。如果您逐一提交百万个API请求,它们将需要数天时间才能完成。如果您并行涌入一百万个API请求,它们将超出速率限制并因错误而失败。

    ChatGPT 2023-02-18
    002.8K
  • ChatGPT|插件教程 – 3

    ChatGPT插件Boolio、Metaphor、I Am Rich、VoxScript、CoinCap、MixerBox OnePlayer、World News、CreditYelp等插件教程。

    2023-05-22
    002.3K
  • ChatGPT-Java-FunAi|免费AI项目集合

    此AI体验网站,旨在为用户提供高效便捷的沟通体验。相较于ChatGPT,FUNAI不需要魔法上网,不需要海外手机号码即可使用,ChatGPT Java基于SpringBoot的后端开源web学习项目。

    2023-05-24
    032.7K

发表回复

登录后才能评论
微信