openAI|获取数据集

本文将演示如何使用OpenAI API来进行情感分析,通过一个美食评论数据集的案例,让大家了解如何将评论汇总为一个嵌入向量。

获取数据集

本文将介绍如何使用OpenAI API来进行情感分析,以预测文本的情感属性,本教程将使用Amazon的美食评论数据集,并演示如何将评论汇总为一个单独的嵌入向量。

1.加载数据集

本例中使用的数据集是来自亚马逊的美食评论。 该数据集包含截至 2012 年 10 月亚马逊用户留下的总共 568,454 条食品评论。我们将使用该数据集的一个子集,其中包含 1,000 条最新评论以用于说明目的。 评论是英文的,往往是正面的或负面的。 每条评论都有一个 ProductId、UserId、Score、评论标题(摘要)和评论正文(文本)。

我们会将评论摘要和评论文本合并为一个组合文本。 该模型将对该组合文本进行编码,并输出单个向量嵌入。

要运行此笔记本,您需要安装:pandas、openai、transformers、plotly、matplotlib、scikit-learn、torch(transformer dep)、torchvision 和 scipy。

# imports
import pandas as pd
import tiktoken

from openai.embeddings_utils import get_embedding
# embedding model parameters
embedding_model = "text-embedding-ada-002"
embedding_encoding = "cl100k_base"  # this the encoding for text-embedding-ada-002
max_tokens = 8000  # the maximum for text-embedding-ada-002 is 8191
# load & inspect dataset
input_datapath = "data/fine_food_reviews_1k.csv"  # to save space, we provide a pre-filtered dataset
df = pd.read_csv(input_datapath, index_col=0)
df = df[["Time", "ProductId", "UserId", "Score", "Summary", "Text"]]
df = df.dropna()
df["combined"] = (
    "Title: " + df.Summary.str.strip() + "; Content: " + df.Text.str.strip()
)
df.head(2)
时间产品编号用户身份分数概括文本合并
01351123200B003XPF9BOA3R7JR3FMEBXQB5一个人从哪里开始…和停止…用一个…想存一些给我芝加哥的家人……标题:从哪里开始……到哪里结束……机智……
11351123200B003JK537SA3JBPC3WFUT5ZP1Arrived in pieces一点都不高兴。 当我打开盒子时,莫…标题:分片抵达; 内容:不高兴…
# subsample to 1k most recent reviews and remove samples that are too long
top_n = 1000
df = df.sort_values("Time").tail(top_n * 2)  # first cut to first 2k entries, assuming less than half will be filtered out
df.drop("Time", axis=1, inplace=True)

encoding = tiktoken.get_encoding(embedding_encoding)

# omit reviews that are too long to embed
df["n_tokens"] = df.combined.apply(lambda x: len(encoding.encode(x)))
df = df[df.n_tokens <= max_tokens].tail(top_n)
len(df)
1000

2.获取嵌入并保存以备将来重用

# 确保根据自述文件在您的环境中设置了 API 密钥:https://github.com/openai/openai-python#usage

# 这可能需要几分钟的时间
df["embedding"] = df.combined.apply(lambda x: get_embedding(x, engine=embedding_model))
df.to_csv("data/fine_food_reviews_with_embeddings_1k.csv")

此文章由OpenAI开源维基百科原创发布,如若转载请注明出处:https://openai.wiki/obtain_dataset.html

(0)
上一篇 2023-02-20 13:57
下一篇 2023-02-20 14:19

相关推荐

  • openAI|如何流式完成

    当使用OpenAI完成端点时,流式传输可以更快地获得响应,提高应用程序的效率和性能。本文提供Python示例,介绍如何接收流完成并处理,以便在整个完成完成之前就可以开始打印或以其他方式处理完成的开始。

    ChatGPT 2023-02-19
    005.2K
  • openAI|文本比较示例

    OpenAI API 嵌入终结点可用于衡量文本片段之间的相关性或相似性,例如语义搜索、问答、建议和自定义嵌入等操作。余弦相似性分数可以用作排名搜索结果中众多特征中的一个。

    ChatGPT 2023-02-20
    001.1K
  • GPT-3|代码编辑示例

    本文介绍了 OpenAI 的编辑端点如何用于编辑代码,通过 Python 函数的示例展示了如何添加文档字符串、添加测试、转换为其他语言等等操作,让代码更加完善、高效。

    ChatGPT 2023-02-20
    01865
  • ChatGPT|HTML网页制作

    这是一个实战的教程,让你可以0基础搭建一个HTML静态网页,网页的界面和功能类似于本站之前为大家所搭建的Prompt模板网页,包含ChatGPT和VS Code工具的使用教程,让您可以快速搭建个人站。

    2023-07-19
    002.0K
  • Prompt|对抗性提示

    本文介绍了一种先进的人工智能AI文本生成技术:基于语言模型的ChatGPT Prompt。讨论了少量样本提示、思维链提示、以及如何防止提示攻击等主题,以及如何设计技术来防止这些攻击也进行了探讨。

    ChatGPT 2023-02-18
    012.2K

发表回复

登录后才能评论
微信