月之暗面开源高效Muon优化器:算力节省近半,大模型训练迎来新突破
Muon优化器升级:解决算力瓶颈
OpenAI前技术人员提出的Muon优化器近期迎来重大改进。月之暗面团队通过引入AdamW的权重衰减机制和参数更新对齐策略,成功将算力需求较AdamW减少48%,并在参数量达1.5B的Llama架构模型中验证其可行性。改进后的Muon解决了原方法在分布式训练中的兼容性问题,支持大规模GPU集群部署。
技术突破:权重衰减与参数对齐
团队发现,直接应用原始Muon会导致模型权重幅度超出bf16精度范围。为此,改进版本融合了AdamW的权重衰减机制,有效控制参数增长。同时,通过调整不同矩阵参数的学习率,确保更新幅度与AdamW一致,降低了超参数调优难度。实验显示,改进后的Muon在8亿参数模型训练中表现最佳,过拟合阶段性能优于传统方法。
分布式训练适配与效率验证
为实现Muon在分布式环境的高效运行,团队提出并行化策略:在ZeRO-1框架基础上,引入梯度聚合通信和分块计算更新量,最小化内存与通信开销。测试表明,Muon的样本效率达AdamW的1.92倍,训练FLOPS仅需52%即可达到同等性能。这一成果为千亿级模型训练提供了新选择。
开源模型Moonlight:性能全面领先
基于改进版Muon,团队开源了16B参数的MoE模型Moonlight(激活参数2.24B)。在5.7T tokens训练量下,该模型在MMLU、HumanEval、C-Eval等多项任务中超越同规模模型,甚至优于部分使用更大数据集的稠密模型。技术报告显示,Muon优化的参数矩阵奇异值熵更高,验证了其提升特征多样性的理论假设。
行业影响与未来展望
Muon的规模化成功引发广泛关注,原OpenAI作者Keller Jordan称其为“Muon发展的里程碑”。月之暗面团队表示,后续将探索Muon在强化学习和多模态任务中的应用。目前,技术报告、代码及模型已在GitHub和HuggingFace平台开源。
原创文章,作者:PhiltreX,如若转载,请注明出处:https://openai.wiki/news-moonshot-muon-upgrade.html